Investigation on an EM Framework for Partial Volume Image Segmentation

نویسندگان

  • Daria Eremina
  • Xiang Li
  • Wei Zhu
  • Jing Wang
  • Zhengrong Liang
چکیده

This work investigates a new partial volume (PV) image segmentation framework with comparison to a previous PV approach. The new framework utilizes an expectation-maximization (EM) algorithm to estimate simultaneously (1) tissue fractions in each image voxel and (2) statistical model parameters of the image data under the principle of maximum a posteriori probability (MAP). The previous EM approach models the PV effect by down-sampling a voxel and then labels each subvoxel as a pure tissue type, where the number of subvoxels labeled by a given tissue type over the total number of subvoxels reflects the fraction of that tissue type inside the original voxel. The tissue fractions in each voxel in this discrete PV model are represented by a limited number of percentage values. In the new MAPEM approach, the PV effect is modeled in a continuous space and estimated directly as the fraction of each tissue type in the original voxel. The previous discrete PV model would converge to the proposed continuous PV tissue-mixture model if there is an infinite number of subvoxels within a voxel. However, in practice a voxel is usually downsampled once or twice for computational reasons. A simulation study reveals that the continuous PV model is not only more realistic but also more accurate than the discrete PV model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Differential Equations applied to Medical Image ‎Segmentation

‎This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...

متن کامل

An EM Framework for Segmentation of Tissue Mixtures from Medical Images

Image segmentation plays a major role in quantitative image analysis and computer aided detection (CAD) and diagnosis (CADx) for clinical applications. Conventional segmentation assigns a single label to each voxel, neglecting the partial volume (PV) effect. This work presents an EM (Expectation Maximization) framework for segmentation of tissue mixture in each voxel. Image data and tissue mixt...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

M14-297 Partial Volume Segmentation of Medical Images

Image segmentation plays an important role in medical image processing. The aim of conventional hard segmentation methods is to assign a unique label to each voxel. However, due to the limited spatial resolution of medical imaging equipment and the complex anatomic structure of soft tissues, a single voxel in a medical image may be composed of several tissue types, which is called partial volum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006